

"BASES DEL CERRAMIENTO INTEGRAL Y EFICIENTE, NECESIDAD URGENTE DE NUESTRO MERCADO"

Distinguido lector,

Extrusiones Metálicas S.A de C.V y AMEVEC tenemos el gusto de ofrecer continuidad a la secuencia de artículos que sobre las principales prestaciones de los cerramientos hemos emprendido. A continuación presentamos la primera parte sobre la "Resistencia a la Carga de Viento" de los cerramientos.

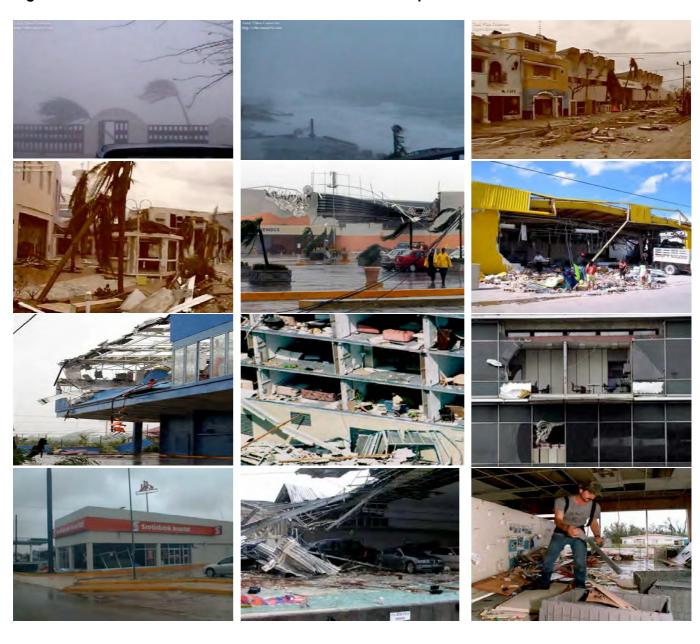
Los edificios y cada una de sus partes (incluyendo las ventanas, puertas y fachadas) deben servir de resguardo o refugio ante eventos naturales extremos como los conocidos huracanes y tornados. Gracias al desarrollo tecnológico alcanzado, los huracanes pueden ser prevenidos, estudiados, pronosticar sus variables características y sus efectos con varios días de anticipación al impacto directo o más cercano. En estas circunstancias la población puede prepararse y son los inmuebles, el lugar donde se pone a salvo la propia vida humana, así como los medios tangibles e intangibles de las personas naturales o jurídicas.

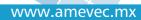
En términos generales, las estructuras portantes de los edificios son correctamente diseñadas para resistir la acción exterior de estos fenómenos naturales. Pero en un gran número de casos cotidianos los diseñadores, constructores y propietarios no prestan la debida atención en el buen diseño e instalación de los elementos más vulnerables de la cascara exterior de la construcción; las ventanas, cerramientos y cada uno sus componentes, no por pasarlos desapercibidos, sino a veces por las exigencias económicas del mercado, por diseños estilistas o vanguardistas, dejando a un lado, las exigencias del proyecto en sí.

Como consecuencia, lo que se supone debería proteger a las personas y sus propiedades, se convierte en instantes, en la peor de las trampas, dejando sin protección el interior de los inmuebles y en primer plano, la integridad de las personas.

Quién escribe y como buen isleño, ha formado parte de su experiencia cotidiana, el vivir con el constante acecho de devastadores y mortíferos huracanes. He vivido, el enorme potencial destructivo de sus potentes vientos, lluvias torrenciales y penetraciones del mar ¿Consecuencias? Pérdida de vidas humanas, daños y derrumbe de las construcciones, desaparición de las pertenencias individuales y colectivas, así como cuantiosas pérdidas materiales en muchos renglones económicos, entre otras afectaciones. He sido testigo de la concentración de turistas en "hoteles de lujo", refugiados en el lobby u otras áreas (como los cuartos de baño) porque las puertas y ventanas de las habitaciones no son seguras. He sentido la sensación de miedo real por la entrada de agua y el silbar aterrador del viento a través de las rendijas de los cerramientos, al ser sometidas por los vientos huracanados. He observado grandes acristalamientos de fachada transformarse de cóncavo a convexo y viceversa en segundos como consecuencia de la acción del viento.

No son historias, no son leyendas. Son vivencias reales, las cuales y a través de estas líneas, dibujamos frente a sus ojos, como secuencias de cuadros para destacar el efecto y estela de consecuencias que los huracanes tropicales dejan a su paso. Con el objetivo claro de remarcar la alta RESPONSABILIDAD que se asume al diseñar los elementos de cierre de la edificación.


Con la destrucción, agotamiento de los cerramientos o envolventes y la entrada de los fuertes vientos al interior, además se expone a la estructura a solicitaciones internas para las cuales no ha sido diseñada.



Poniendo en franco riesgo la estabilidad del conjunto construido, empeorando la situación y agudizando las condiciones de desastre.

Las imágenes testimoniales que aparecen en la Figura No. 1 hablan por sí solas:

Figura No. 1: Testimonios de efectos de los huracanes tropicales.

La República Mexicana no está exenta a la acción destructora y letal de estos eventos naturales. Los meses de mayo a noviembre son los de mayor recurrencia. Las costas del Pacífico mexicano, Mar Caribe y Golfo de México son las zonas con mayor incidencia de huracanes. Cada año un promedio de 4 eventos naturales, de un total de 23, afectan directamente o se aproximan a menos de 100 Km de territorio mexicano.

Los estados de Baja California Sur, Michoacán, Sinaloa, Sonora y Tamaulipas refieren estadísticamente la mayor ocurrencia de penetración (2 a 4 años). A lo largo de sus costas se asientan aproximadamente 4 millones de personas, el 40% de la población total de estos estados.

En otros estados de la república la recurrencia de penetración ciclónica disminuyen en número pero no en intensidad y catastróficas consecuencias, oscilando entre 5 y 7 años. Estos territorios son: Baja California Sur, Campeche, Colima, Quintana Roo y Jalisco, quedando expuestas a sufrir sus efectos, un promedio de 2 millones de personas (el 26.3% de su población total).

Un último grupo, integrado por los estados de Nayarit, Guerrero, Tabasco, Oaxaca, Veracruz, Chiapas y Yucatán el período de recurrencia o penetración de ciclones es de 8 a 26 años. 4 millones de personas (23.9% del total) se encuentran expuestas a este riesgo.

En las siguientes gráficas de las Figuras No. 2 y 3 se pueden apreciar las zonas de mayor incidencia, así como las estadísticas (1895 – 2007) de las trayectorias de los huracanes que se han formado en los océanos Pacífico y Atlántico mexicanos.

Figura No. 2 Mapa de incidencia de huracanes en la República Mexicana. (De acuerdo con el Atlas Nacional de Riesgos. SEGOB. CENAPRED).

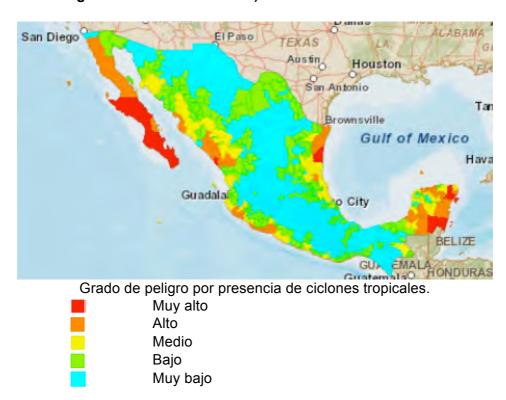



Figura No. 3 Mapa estadístico de las trayectorias de los huracanes que se han formado en los océanos Pacífico y Atlántico mexicanos 1895 – 2007.

Algunas estadísticas además de impresionantes, son claras y precisas.

Tabla no.1: Estadística de daños de los huracanes más devastadores. (Wikipedia).

Huracán	Año	Categoría (Velocidad Km/h)	Fallecimientos	Pérdidas Materiales
-	1959	5 (260)	2 000	280.00 Millones USD
Gilberto	1988	5 (295)	341	5.50 Mil Millones USD
Gert	1993	2 (165)	102	170.00 Millones USD
Paulina	1997	4 (210)	400	7.50 Mil Millones USD
Wilma	2005	5 (295)	63	29.10 Mil Millones USD
Stan	2005	1 (130)	2080	1.00 Mil Millones USD
Emily	2005	5 (260)	15	988.00 Millones USD
Rick	2009	5 (285)	3	Desconocidas
lda	2009	2 (165)	10	173.65 Millones USD
Jimena	2009	5 (250)	5	50.80 Millones USD
Celia	2010	5 (260)	243	1.67 Mil Millones USD
Agatha	2010	DT (75)	275	1.50 Mil Millones USD
Beatriz	2011	1 (150)	3	Desconocidas
Jova	2011	4 (205)	9	Desconocidas
Arlene	2011	TT(100)	22	Desconocidas
Harvey	2011	TT(100)	5	Desconocidas
Nate	2011	TT(100)	5	Desconocidas

Así mismo, los expertos confirman el futuro inmediato de la actividad ciclónica en nuestra área geográfica:

Una comisión de la Organización Meteorológica Mundial formada por 10 expertos en huracanes y cambio climático consideró que:

- Para los próximos años crecerá la fuerza destructora de los huracanes, entre un 2% y un 11%.
 Pero habrá entre un 6% y un 34% menos huracanes. Habrá menos tormentas moderadas y débiles y más grandes y dañinas, según el consenso.
- Un aumento del 11% en la velocidad del viento equivale a un aumento del 60% en daños, dijo otro de los autores del estudio, Kerry Emanuel, profesor de meteorología del Instituto de Tecnología de Massachusetts.
- Las tormentas también acarrearán más Iluvias, otro indicio de daños, dijo Tom Knutson, un meteorólogo investigador de la Administración Nacional Oceánica y Atmosférica de Estados Unidos.

De acuerdo con la publicación del diario UNIVERSAL del 1ro de Febrero de 2012. Científicos del Instituto de Geofísica (IGf) y del Centro de Ciencias y Desarrollo Tecnológico (CCADET) de la UNAM advirtieron que podría ser en el año 2012 o 2013, cuando un huracán de magnitud mayor pueda impactar a México.

Los testimonios, cifras y previsiones anteriores son una realidad ineludible que se encuentra ante nuestros. Cada año se ejecutan miles de edificios y residencias, sin tomar en consideración estos aspectos para el diseño de sus cerramientos. Es una obligación que tenemos por delante diseñadores, constructores, inversionistas, gobierno, fabricantes y población en general. Debemos emprender el camino correcto en el buen diseño y adecuadas prácticas en el sector constructivo y del cerramiento en México.

El Manual de Diseño de Obras Civiles - Diseño por Viento - Comisión Federal de Electricidad - Instituto de Investigaciones Eléctricas – 2008 establece los parámetros necesarios para determinar la carga de viento característica que debe emplearse en el diseño y construcción de las estructuras en la república mexicana.

Sí aplicamos lo establecido en el referido manual podemos determinar la carga de viento que deben soportar las ventanas, cerramientos y envolventes de las edificaciones.

Destacamos que la acción del viento sobre el edificio ejerce su efecto en zonas significativas. Estas zonas son: zonas centrales o centro de pantalla y efectos incrementados en cuantías importantes, en las zonas de las esquinas.

Por eso es imprescindible que el diseño de las ventanas, puertas y canceles se realice tomando en cuenta su localización en la fachada del edificio.

En las siguientes tablas expresamos los resultados de la carga de viento característica en:

- Todas las zonas eólicas de la república mexicana (A, B, C, D, E).
- Condiciones de rugosidad del terreno (Centro de grandes ciudades. Zonas urbanas. Zonas rurales. Terrenos abiertos prácticamente plano, sin obstáculos).
- Para rangos de altura desde 0 100 m.
- Condiciones topográficas locales (Protegido. Normal. Expuesto 1. Expuesto 2).

Son valores de referencia generales y críticos, debiéndose en cada caso determinar los valores particulares.

Tabla no. 2: Carga de viento (Kg / m^2) para edificios de (λ) = (H / b) \leq 4. Para ventanas ubicadas en el centro de la pantalla.

Entorno del	Altura de la									de la ventana											
cdificio	ventana soble el suelo (M)	Protegido				Normal				Expuesto 1 (Promontorios o								montor on P≥4			
										Zona s	Terraplenes con 0 ≤ P ≤ 45 °) según Mapa						cirabi	elles ct	ALT E 4	2.1	
	122	Α	В	С	D	E	Α	В	С	D	E	Α	В	С	D			В	С	D	Е
	100	75	91	107	140	301	92	112	132	173	371	102	124	145	190	409	270	328	385	505	1085
12. S.V	90	71	86	101	133	286	88	107	125	164	353	97	117	138	181	389	257	312	366	480	1032
Centro de grandes	80	69	83	98	128	276	85	103	121	159	341	94	114	133	175	376	248	301	353	464	997
ciudades.	70	65	79	93	122	262	81	98	115	151	324	89	108	126	166	357	236	286	335	440	946
Terrenos con numerosas	60	63	76	90	118	253	78	94	111	145	312	86	104	122	160	344	227	276	324	425	913
obstrucciones	50	59	/1	83	109	235	12	88	103	135	290	80	9/	113	149	320	211	256	301	395	848
largas, altas y estrechamente	40	54	66	77	101	218	67	81	95	125	269	74	90	105	138	296	196	237	279	366	786
espaciadas.	30	49	60	70	92	197	61	74	86	113	243	67	81	95	125	268	177	215	252	331	712
1. 4. 11	20	43	52	62	81	174	53	65	76	100	214	59	71	04	110	236	156	109	222	292	627
- 4	≤ 10	34	41	48	63	136	42	51	60	78	168	46	56	66	86	186	123	149	174	229	492
	100	81	98	116	152	326	100	122	143	187	402	110	134	157	206	444	293	355	417	547	1176
	90	79	95	112	147	316	97	118	138	181	390	107	130	152	200	130	284	344	101	530	1139
	80	76	92	108	142	305	94	114	134	175	377	104	126	147	193	416	275	333	391	513	1103
Zonas urbanas. Terrenos	70	72	88	103	135	291	89	108	127	167	359	99	119	140	184	396	261	317	372	488	1049
cubiertos por	60	70	85	100	131	281	86	105	123	161	347	95	116	136	178	382	253	306	360	472	1014
numerosas obstrucciones	50	65	79	93	122	262	81	98	115	151	324	89	108	126	166	357	236	286	335	440	946
estrechamente espaciadas.	40	61	74	86	113	244	75	91	107	140	301	83	100	118	154	332	219	266	312	410	880
espaciauas.	30	56	68	80	105	226	70	84	99	130	279	77	93	109	143	308	203	247	290	380	817
	20	49	60	70	92	197	61	74	86	113	243	67	81	95	125	260	177	215	252	331	712
	≤ 10	40	48	56	74	159	49	59	70	92	197	54	65	77	101	217	143	174	204	268	575
1 3 10	100	92	111	131	171	369	113	137	161	212	455	125	152	178	233	502	331	402	472	619	1330
	90	89	108	127	166	358	110	133	157	205	442	121	147	173	226	487	322	390	458	601	1291
' V I	80	86	105	123	161	347	107	129	152	199	428	118	143	167	220	472	312	378	444	583	1252
Zonas rurales	70	84	102	119	156	336	103	125	147	193	415	114	138	162	213	458	302	367	430	565	1214
Terrenos planos	60	81	98	116	152	326	100	122	143	187	402	110	134	157	206	444	293	355	417	547	1176
u ondulado con pocas	50	77	94	110	144	311	95	116	136	178	383	105	128	150	197	423	279	339	397	522	1121
construcciones.	40	72	88	103	135	291	89	108	127	167	359	99	119	140	184	396	261	317	372	488	1049
	30	68	82	96	126	271	83	101	119	156	335	92	112	131	172	369	244	296	347	456	980
	20	61	74	86	113	244	75	91	107	140	301	83	100	118	154	332	219	266	312	410	880
	< 10	51	62	73	95	205	63	77	90	118	253	70	84	99	130	279	185	224	263	345	741
	100	105	127	149	195	420	129	157	184	241	518	142	173	203	266	571	377	458	537	705	1515
	90	102	123	145	190	408	125	152	179	234	504	138	168	197	258	555	367	445	522	685	1473
1 N	80	100	122	143	187	402	124	150	176	231	497	136	165	194	255	548	362	439	515	676	1452
Terrenos	70	97	118	139	182	391	120	146	171	225	483	132	161	189	248	532	351	426	500	656	1411
abiertos	60	95	115	135	177	380	117	142	166	218	469	129	156	183	240	517	341	414	486	638	1370
practicamente plano, sin	50	90	3995			363		100	17.00	209	465	123	9.00	100-5	777	494	326		465		1311
obstáculos y superficies de	-5010	3705	110	129	169	1.44.5	112	135	159	2-445		***	149	175	230	0.00.0	200.00	396	10000	610	0.100
agua.	40	86	105	123	161	347	107	129	152	199	428	118	143	167	220	472	312	378	444	583	1252
147	30	82	100	117	154	331	102	123	145	190	409	112	136	160	210	451	298	361	424	556	1195
	20	76	92	108	142	305	94	114	134	175	377	104	126	147	193	416	275	333	391	513	1103
- 4	≤ 10	66	80	94	123	265	82	99	116	152	328	90	109	128	168	361	239	289	340	446	958

Tabla no. 3: Carga de viento (Kg / m^2) para edificios de (λ) = (H / b) \leq 4. Para ventanas ubicadas en la zona de máxima influencia del efecto esquina del viento sobre la edificación.

Entorno del edificio	Altura de la ventana soble el	Situación de la ventana. Protegido Normal									Ехр	uesto	1 (Pro	monto	rios o	Expuesto 2 (Promontorios o Terraplenes con P ≥ 45 °)					
		Terrapienes con 0 ≤ P ≤ 45 Zona aegún Mapa																			
		A	В	С	D	E	A	В	С	D	E	A	В	C	D	E	A	В	C	D	E
	100	146	177	208	273	586	180	219	256	337	723	199	241	283	371	798	527	639	750	984	2115
	90	139	168	198	259	557	171	208	244	320	688	189	229	269	353	759	501	608	713	936	2012
Centro de	80	134	163	191	251	539	166	201	236	309	665	183	221	260	341	733	484	587	689	905	1944
grandes ciudados.	70	127	154	181	238	511	157	191	224	294	631	173	210	247	324	696	459	557	654	858	1845
Terrenos con numerosas	60	123	149	1/5	229	493	152	184	216	283	609	167	203	238	312	6/1	443	538	631	828	1780
obstrucciones	50	114	138	162	213	458	141	171	201	263	566	155	188	221	290	624	412	500	586	770	1654
largas, altas y catrechamente	40	106	128	151	198	425	131	158	186	244	524	144	175	205	269	578	382	463	543	713	1533
espaciadas.	30	96	116	136	179	384	118	143	168	221	475	130	158	185	243	523	346	419	492	646	1388
	20	56	68	80	105	226	69	84	99	130	279	77	93	109	143	307	203	246	289	379	815
	≤ 10	44	54	63	82	177	54	66	78	102	219	60	73	86	112	241	159	193	227	298	640
	100	158	192	225	296	635	195	237	278	365	784	215	261	307	402	865	571	693	813	1067	2294
	90	153	186	218	286	615	189	229	269	353	760	209	253	297	390	838	553	671	788	1034	2222
	80	148	180	211	277	596	183	222	261	342	735	202	245	287	377	811	536	650	762	1001	2151
Zonas urbanas.	70	141	171	201	264	567	174	211	248	326	700	192	233	274	359	771	510	618	725	952	2046
Terrenos cubiertos por	60	136	165	194	255	548	168	204	240	315	676	186	225	264	347	746	493	597	701	920	1978
numerosas obstrucciones	50	127	154	181	238	511	157	191	224	294	631	173	210	247	324	696	459	557	654	858	1845
estrechamente capaciadas.	40	118	144	169	221	476	146	177	208	273	587	161	195	229	301	647	427	519	609	799	1717
Capaciavas.	30	110	133	156	205	441	136	165	193	253	545	150	181	213	279	601	397	481	565	741	1593
	20	64	77	91	119	256	79	96	112	147	316	87	105	124	162	349	230	279	328	430	925
	≤ 10	52	63	73	96	207	64	77	91	119	256	70	85	100	131	282	186	226	265	348	748
1	100	179	217	255	334	719	221	268	315	413	887	244	295	347	455	978	646	784	920	1207	2594
	90	174	211	247	324	697	214	260	305	401	861	236	287	337	442	949	627	760	893	1171	2518
	80	168	204	240	315	676	208	252	296	389	835	229	278	326	428	921	608	738	866	1136	2442
	70	163	198	232	305	656	202	245	287	377	810	222	270	316	415	893	590	715	839	1101	2367
Zonas rurales. Terrenos planos	60	158	192	225	296	635	195	237	278	365	784	215	261	307	402	865	571	693	813	1067	2294
u ondulado con pocas	50	151	183	215	282	606	186	226	265	348	748	205	249	292	383	824	544	660	775	1017	2186
construcciones.	40	141	171	201	264	567	174	211	248	326	700	192	233	274	359	771	510	618	725	952	2046
	30	132	160	188	246	529	163	197	232	304	653	179	218	255	335	720	476	577	677	889	1911
	20	79	96	112	147	317	97	118	139	182	391	107	130	153	201	431	285	346	406	532	1144
	≤ 10	66	81	95	124	267	82	99	117	153	329	90	110	129	169	363	240	291	342	448	963
	100	204	247	290	381	818	252	305	358	470	1010	2//	336	395	518	1114	736	892	1048	1375	2955
	90	198	240	282	370	796	245	297	348	457	982	270	327	384	504	1083	715	868	1018	1336	2873
	80	195	237	278	365	784	241	293	343	451	968	266	323	379	497	1068	705	855	1004	1318	2832
Terrenos	70	190	230	270	355	762	234	284	334	438	941	258	313	368	483	1037	685	831	976	1280	2752
abiertos practicamente	60	184	224	262	344	740	228	276	324	425	914	251	304	357	469	1008	666	807	947	1243	2672
plano, sin obstáculos y	50	176	214	251	329	708	218	264	310	407	874	240	291	342	448	964	636	772	906	1189	2556
superficies de	40	168	204	240	315	676	208	252	296	389	835	229	2/8	326	428	921	608	/38	866	1136	2442
agua.	30	161	195	229	300	646	198	241	283	371	797	219	265	312	409	879	580	704	826	1084	2330
	20	99	120	141	185	397	122	148	174	228	490	135	163	192	251	541	357	433	508	667	1434
	≤ 10	86	104	122	160	345	106	129	151	198	426	11/	142	166	218	4/0	310	3/6	441	5/9	1245
	2.0	00	10-1	122	100	313	100	123	101	100	120	1.17	1112	100	210	470	510	510		313	12110

Tomemos dos ejemplos de una misma ventana ubicada a 80 m de altura en dos edificios idénticos, uno localizado en el Distrito Federal y otro en Cancún. Veamos los resultados comparativos:

Altur a (m)	Ciudad	Zona Eólic	Terreno	_	Carga de viento (Kg/m²)		dad de (Km/h)
		а		Centro Pantall	Zona Esquin	Centro Pantall	Zona Esquin
				а	а	а	а
80	DF (Centro de gran ciudad)	А	Protegid o	69	134	120	167
	Cancún (1ra línea costera)	E	Normal	341	665	260	372

Como demuestran los valores anteriores las ventanas en eventos naturales de características importantes pueden estar solicitadas a esfuerzos muy, muy extremos. Es por ello que urge desarrollar la conciencia necesaria en diseñadores, constructores, inversionistas, gremio del cerramiento mexicano y población en general. Urge desarrollar y garantizar la ejecución de adecuadas prácticas y preservar así la vida e integridad física de las personas, de los inmuebles y los bienes que con tanto sacrificio son adquiridos.

En nuestro trabajo diario analizamos proyectos de edificios en zonas de gran recurrencia de estos fenómenos con dimensiones desproporcionadas, con cerramientos que sus dimensiones rasgan lo imposible y peor aún, cuando no se analiza la capacidad portante de estos y cada uno de sus componentes.

En uno de los proyectos de norma mexicana encabezados por AMEVEC y el Comité Técnico de Normalización Nacional de Industrias Diversas a través del Subcomité de la Ventana y Productos Arquitectónicos para el Cerramiento Exterior de Fachadas, Control Solar, Aislamiento Térmico y Acústico, se presentará de forma detallada la metodología de cálculo estructural a seguir para el diseño de los canceles y vidrios ante la acción de la carga de viento. Teniendo en cuenta que el diseño debe realizarse mediante el Estado Límite de Servicio, se especifica también parámetros importantes tales como:

- Flecha Máxima Admisible: L/200 para L ≤ 240 cm; L/300 para L > 240 cm; 0.8 cm para doble acristalamiento.
- Módulo de Elasticidad:
 - o Para acero = 2 100 000 Kg/Cm²
 - o Para aluminio = 700 000 Kg/Cm²
 - Para madera = 110 000 Kg/Cm²

Coeficientes de equivalencia entre el acristalamiento monolítico recocido y otros:

Armado			1.20
Endurecido	0	semi	0.90
templado			
Templado P	≤ 900 F	Pa	0.80
Templado P	> 900 F	^o a	0.75
Laminado 2 v	ridrios		1.30
Laminado 3 v	ridrios		1.60
Cámara 2 vid	rios		1.50
Cámara 3 vid	rios		1.70

Además el diseño del edificio debe realizarse de una forma integradora, donde se tengan en cuenta varios detalles muy importantes.

Por ejemplo, otro efecto devastador de los huracanes es la penetración del mar. En el diseño de los edificios en zonas propensas a este efecto debe incluir un estudio detallado para determinar el emplazamiento de la construcción, medios de protección. Quizás se puede proponer construir un promontorio o explanación, muros de contención o zonas de estacionamiento a nivel de terreno. De manera que el mar no impacte directamente sobre zonas de servicio de la edificación. No son pocas las evidencias en que el mar y los proyectiles que este arrastra, ha destrozado cerramientos en zonas de lobby, departamentos, tiendas, restaurantes, etc.

Como se ha explicado, el viento ejerce mayor presión en las zonas de las esquinas de la edificación. Estos conceptos estructurales deben ser tenidos en cuenta al determinar: espacios, ubicación y dimensiones de los cerramientos.

Otro aspecto relevante para lograr una ventana integral y eficiente, es la incidencia directa que tiene la Resistencia a la Carga de Viento de una ventana, con el resto de las prestaciones fundamentales de la misma: Permeabilidad al aire, Estanqueidad al agua, Aislamiento acústico y térmico.

Una ventana que no ofrezca una adecuada Resistencia a la Carga de Viento, permitirá mayor infiltración de aire, mayor penetración de agua, no aislará adecuadamente el ruido y se verá afectado de forma importante el aislamiento térmico. Es decir, la ventana a pesar de emplear sistemas de perfiles y acristalamientos adecuados y revolucionarios (en el mejor de los casos y no son los más empleados en el mercado mexicano) no garantizará las condiciones de seguridad, confort, salubridad y eficiencia que se requiere en la edificación.

El reto está planteado. Extrusiones Metálicas pone a disposición de: arquitectos, diseñadores y constructores, los servicios de pre ingeniería, ingeniería, memoria de cálculo y previsión de prestaciones de cerramientos. Solo debe contactarnos, estamos a sus órdenes.

No debemos permitir que se promuevan proyectos de edificios por ciertos acabados de "CALIDAD", mientras que sus elementos más vulnerables (las ventanas) desde todo punto de vista y por lo general, son de una calidad muy baja. Se pone en peligro la vida de las personas, la seguridad de su patrimonio adquirido, la comodidad y la economía por gasto energético. En la gran mayoría de los proyectos no se están promoviendo soluciones integrales que colaboren con las necesidades de ahorro energético que nos urge implementar, por el bien de nosotros mismos y de nuestras futuras generaciones.

Debemos cumplimentar tod@s, las tareas pendientes en materia de medio ambiente, elevación de los niveles de vida, salud y seguridad, además de afrontarlos con total realismo y responsabilidad. La edificación segura y sostenible es uno de los caminos verdes a seguir, que sin duda alguna los resultados a gran escala, serán muy positivos.

Tomemos nota y aprendamos de otros países, principalmente de la Unión Europea y Brasil, ya que el esfuerzo para preservar nuestro planeta, nos corresponde a tod@s.

"Ya el reloj se ha detenido, son los impostergables retos del ayer, para garantizar la vida del mañana".

Departamento Técnico I+D+i Extrusiones Metálicas